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Abstract

As the quality of consumer Fused Deposition Modeling Additive (FDMA) 3D printers has advanced, signifi-
cant efforts have been made to lower the barriers to firearm manufacturing at home. While 3D-printed plastic
is often inappropriate for components like barrels, 3D-printable tools and jigs have emerged to enable fabrica-
tion using ubiquitous hardware items of suitable materials and common hand tools. Electrochemical Machining
(ECM) has become a viable method for boring and rifling barrels—processes traditionally requiring expensive,
high-precision equipment beyond the reach of hobbyists.

Jeff Rodriguez’s Liberator12k project pioneered the use of 3D-printed ECM fixtures for barrel production, a
concept later refined by IvanTheTroll in the FGC-9 and its successor, the FGC-9 MKII. The MKII introduced the
use of a progressive twist rifling—a feature prized for its ballistic benefits but rarely seen due to the complexity
and cost of conventional manufacturing methods. With ECM, however, machining a progressive twist barrel is
as straightforward as a constant twist, making this advanced feature accessible to hobbyists.

The remaining challenge lies in the complexity of designing the CAD model. This work aims to address
this gap by developing a parametric OpenSCAD model that allows users to easily customize progressive twist
features by modifying a few key parameters. This approach empowers hobbyists to integrate advanced rifling
geometries into their projects with minimal technical barriers.

1 Defining the twist functions

1.1 Measuring the twist of the FGC-9 MKII mandrel

The FGC-9 MKII release included a STEP �le for the ECM mandrel, which was imported into FreeCAD, an
open-source CAD modeling tool. The following steps were used to measure the twist rate:

1. Aligning and Centering:

� The mandrel was aligned and centered along the Z-axis.

� A cylinder, also centered on the Z-axis, was added with a height greater than the mandrel and a radius
intersecting the wire channel

2. Boolean Cut Operation:

� The cylinder and mandrel were selected, and a Boolean cut operation was performed.

� This operation created an edge on the wire channel that followed the twist.

3. Extracting Edge Data:

� Using the Curves Workbench in FreeCAD, the edge was discretized (Curves > Discretize) to create a
series of points along the edge.

� These points were exported to a text �le (Points > Export Points) in ASC format.
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4. Calculating Twist Rate:

� The coordinates of the points were used to calculate the change in rotation (∆rotation) around the Z-axis
between consecutive points.

� Dividing ∆rotation by the change in 𝑧 (∆𝑧) gave the twist rate at each point.

𝑇𝑤𝑖𝑠𝑡𝑅𝑎𝑡𝑒 =
atan2(𝑦𝑛+1, 𝑥𝑛+1)− atan2(𝑦𝑛, 𝑥𝑛)

𝑧𝑛+1 − 𝑧𝑛

𝑖𝑛

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

x y z 𝑖𝑛
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

-0.597759 -4.3693 21.5974 42.92126245
-0.571098 -4.37287 22.6449 42.48180185
-0.544131 -4.3763 23.6923 42.03192352
-0.516847 -4.37961 24.7397 41.57343646
-0.489235 -4.38278 25.7871 41.11076139

... ... ... ...
4.01473 -1.82483 118.842 10.00378569
4.06041 -1.7208 119.884 10.00450163
4.1034 -1.61562 120.925 9.994106839
4.14366 -1.50936 121.967 10.00328837
4.18117 -1.40211 123.008 9.994649931

0 20 40 60 80 100
0

10

20

30

40

50

𝐵𝑎𝑟𝑟𝑒𝑙 𝐿𝑒𝑛𝑔𝑡ℎ : 𝑚𝑚

𝑇
𝑤
𝑖𝑠
𝑡
𝑅
𝑎
𝑡𝑒

:
𝑖𝑛

𝑟
𝑜
𝑡𝑎

𝑡𝑖
𝑜
𝑛

Observations

� The calculated twist rates showed some deviation from a smooth progression.

� These deviations may result from imperfections in the original CAD �le, inaccuracies introduced during �le
conversion, or irregularities in the cross-section pro�le.

� Despite this, the �nal twist rate of approximately 1:10 (suitable for 9mm parabellum projectiles) aligns with
expectations, indicating su�cient accuracy for practical use.

1.2 Creating a function for a parametric twist

A simple linear function was chosen to model the twist progression :

𝑓(𝑥) = −𝑥
𝑔

𝑙
+ 𝑏

Where:

� 𝑔 is the di�erence (the �gain�) between the twist rate at the breech (𝑏) and muzzle (𝑚):

𝑔 = 𝑏−𝑚

� 𝑙 is the length over which the twist progresses

Using the measured data:

� 𝑚 = 10

� 𝑏 = 43

� 𝑔 = 𝑏−𝑚 = 43− 10 = 33

� 𝑙 = 85
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The selected formula and values present a decent �t for the beginning and end of the twist and provides a
smooth transition through the observed deviation. Additionally, the common unit, inches/rotation, may exaggerate
the deviation due to not being a linear unit�the di�erence between a twist rate of 1:43 to 1:42 is signi�cantly less
than the di�erence between 1:9 to 1:10. Inverting this unit ( 𝑖𝑛𝑐ℎ

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 to 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
𝑖𝑛𝑐ℎ ) will give a more intuitive plot for

understanding the gain rate. We will call this hyperbolic curve ℎ(𝑥).

ℎ(𝑥) = 𝑓(𝑥)−1

ℎ(𝑥) =

(︃
−𝑥 33𝑖𝑛

85𝑚𝑚 + 43𝑖𝑛

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

)︃−1

=
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

−𝑥 33𝑖𝑛
85𝑖𝑛 + 43𝑖𝑛

OpenSCAD uses millimeters, rather than inches, as a native unit, so we convert to that:

=
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

−𝑥
33* 25.4𝑚𝑚

𝑖𝑛

85𝑚𝑚 + 43𝑖𝑛 * 25.4𝑚𝑚
𝑖𝑛

=
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

−𝑥 838.2𝑚𝑚
85𝑚𝑚 + 1092.2𝑚𝑚

Also, OpenSCAD uses degrees in the transformations and trigonometric functions, so we convert rotation to
degrees:

=
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

−𝑥 838.2𝑚𝑚
85𝑚𝑚 + 1092.2𝑚𝑚

* 360∘

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
=

360∘

−𝑥 838.2𝑚𝑚
85𝑚𝑚 + 1092.2𝑚𝑚

or generally as:

ℎ(𝑥) = −𝑥
360

𝑔 + 𝑏

𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑚𝑚
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Anticipating a desire to experiment with rate at which the gain increases, an alternate function was chosen�a
linear rate gain would, perhaps, distribute the torque exerted on the projectile more evenly. We call this function
𝑙(𝑥). We adjust the rate gain to any curve between ℎ(𝑥) and 𝑙(𝑥) with the user supplying a value to take a weighted
average.

𝑙(𝑥) = 360𝑥
𝑔

𝑙
+

360

𝑏

And our function to combine the two functions into the �nal gain pro�le (𝑝) where 0 < 𝑝 < 1:

𝑔(𝑥) = 𝑙(𝑥)(1− 𝑝) + ℎ(𝑥)𝑝
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An interactive graph may be found at

https://www.desmos.com/calculator/hhnmuiw27l

Our initial attempt was to use these functions to iterate steps over the length of the gain twist and then use the
progressive sum to position the twist at each step. However, the twist progresses over the length so each step was
rotated slightly less than it should have been. It was incorrectly assumed that this error would be negligible.

A common way to work with objects in OpenSCAD is to use lower resolutions while drafting to reduce the
render time when making frequent changes and increasing that resolution for the �nal render. For instance, the
𝑐𝑖𝑟𝑐𝑙𝑒() object is actually an $𝑓𝑛-sided polygon where $𝑓𝑛 is set to a low value, reducing the number of point, but
generally maintaining the same geometry when $𝑓𝑛 is set higher for a �nal render.

In our attempt, when the length of the iterated step was changed there there was a very noticeable shift in the
total rotation. This could cause signi�cant problems if the object was aligned with additional static objects in a
design.

The solution was to change the functions to be integrals of our previous functions.
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For our linear gain rate:

𝐿(𝑥) =

ˆ
360𝑥

1
𝑚 − 1

𝑏

𝑙
+

360

𝑏
𝑑𝑥

= 180𝑥2
1
𝑚 − 1

𝑏

𝑙
+ 𝑥

360

𝑏
+ 𝐶

For our hyperbolic gain rate:

𝐻(𝑥) =

ˆ
360

−𝑥 𝑔
𝑙 + 𝑏

𝑑𝑥

= −360
𝑙

𝑔
𝑙𝑛(| − 𝑥

𝑔

𝑙
+ 𝑏|) + 𝐶

We evaluate 𝐻(0) to �nd 𝐶

𝐶 = 𝐻(0) = −360
𝑙

𝑔
𝑙𝑛(|𝑏|)

𝐻(𝑥) = −360 𝑙
𝑔 (𝑙𝑛(| − 𝑥 𝑔

𝑙 + 𝑏|)− 𝑙𝑛(|𝑏|))

For the weighted average between the two we rede�ne g(x):

𝑔(𝑥) = 𝐿(𝑥)(1− 𝑝) +𝐻(𝑥)𝑝
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An interactive graph may be found at

https://www.desmos.com/calculator/wseu05ihcp

And �nally we need a function for the constant rotation at the muzzle end. This will be a simple line with a
slope of 𝑚. But we need to start where the gain twist stops.

𝑀(𝑥) = 𝑚(𝑥− 𝑙) + 𝑔(𝑙)
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1.3 Using these functions in an OpenSCAD script

The twist functions derived earlier were implemented in OpenSCAD to generate a parametric model of the ri�ing
twist. The following constants and functions allow users to de�ne and control the twist parameters e�ectively.

1 twistLength = 104; // Total length of the rifling (mm)

2 muzzleTwistLength = 19; // Length of constant twist at the muzzle (mm)

3 gainTwistLength = twistLength - muzzleTwistLength;

4 breechTwistRate = 1092.2; // Initial twist rate at the breech (degrees/mm)

5 muzzleTwistRate = 254; // Final twist rate at the muzzle (degrees/mm)

6 gain = breechTwistRate - muzzleTwistRate;

7 gainProfile = .5; // Weighting factor for linear vs. hyperbolic profile

Implementing Twist Functions

1. Linear Gain Rotation

18 function linearGainRotation(z) = 180*z^2*( muzzleTwistRate ^-1- breechTwistRate ^-1)/

gainTwistLength +360*z/breechTwistRate;

2. Hyperbolic Gain Rotation:

The know working gain rate.

19 function hyperbolicGainRotation(z) = -360* gainTwistLength/gain*(ln(z*-gain/

gainTwistLength+breechTwistRate)-ln(breechTwistRate));

3. Combined Gain Rotation:

A weighted average of the linear and hyperbolic pro�les allows users to balance smoothness and precision:

20 function gainRotation(z) = (linearGainRotation(z)*(1- gainProfile)) +

hyperbolicGainRotation(z)*gainProfile;

4. Muzzle Rotation:

The rotation for the constant twist near the muzzle builds on the cumulative rotation from the gain twist:

21 function muzzleRotation(z) = (z-gainTwistLength)*muzzleTwistRate ^ -1*360+ gainRotation(

gainTwistLength);

5. Total Rotation:

This function calculates the rotation angle at any point along the Z-axis, switching between gain twist and
muzzle twist as needed:

22 function rotation(z) = z <= gainTwistLength ? gainRotation(z):muzzleRotation(z);

Usage

The 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑧) function outputs the cumulative rotation in degrees for a given 𝑧-coordinate of the progressive
twist described by our chosen constants.
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2 Building a polyhedron

Existing 3D-printed ECM �xture designs contain two intersecting channels that follow the twist�one for the cathode
wire and one for the electrolytic �uid to �ow. To implement each we create a module 𝑐ℎ𝑎𝑛𝑛𝑒𝑙() that can be called
for each with the distinct attributes as inputs.

27 module channel(radius ,sideCount ,centerOffset){

}

� Inputs:

– 𝑟𝑎𝑑𝑖𝑢𝑠: The distance from the center to the vertex of the regular polygon that is the cross section of the
channel.

– 𝑠𝑖𝑑𝑒𝐶𝑜𝑢𝑛𝑡: The number of sides of the regular polygon that is the cross section of the channel.

– 𝑐𝑒𝑛𝑡𝑒𝑟𝑂𝑓𝑓𝑠𝑒𝑡: The distance between (0, 0) and the center the regular polygon that is the cross section
of the channel.

The geometry of the channel is generated with an OpenSCAD 𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑜𝑛(). We will de�ne two parameters

� 𝑝𝑜𝑖𝑛𝑡𝑠: A list of coordinates for all vertices of the channel.

� 𝑓𝑎𝑐𝑒𝑠: A list of each face de�ned by its vertices as the indices of the 𝑝𝑜𝑖𝑛𝑡𝑠 list.

2.1 Points

Defining the Points of the Cross Section

We create the function 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠() to generate a list of 2D points for a regular polygon, given its radius,
number of sides, and o�set from the rotation axis.

23 function polygonPoints(radius ,sideCount ,centerOffset) =

24 [for(i=[0: sideCount -1])

25 [

26 radius * sin (360/ sideCount*i-90) + centerOffset ,

27 radius * cos (360/ sideCount*i-90)

28 ]

29 ];

� Inputs:

– radius: The distance from the polygon's center to its vertices.

– sideCount: The number of sides in the polygon.

– centerO�set: The o�set of the polygon's center from the rotation axis.

� Output: A list of 2D points de�ning the polygon.

Example: For a triangular polygon with radius 1 and center o�set 2:
echo(polygonPoints(1,3,2)); //ECHO: [[1, 0], [2.5, 0.866025], [2.5, -0.866025]]
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Translating and Rotating Points Along the Z-Axis

We locate each vertex with the function 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑃𝑜𝑖𝑛𝑡(). The rotation is determined by passing the 𝑧 input to
the 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛() function. Then trigonometric functions are applied to located the 𝑥 and 𝑦 coordinates.

30 function translatePoint(point ,z) = [

31 cos(rotation(z)) * point.x - sin(rotation(z)) * point.y ,

32 cos(rotation(z)) * point.y + sin(rotation(z)) * point.x ,

33 z

34 ];

� Inputs:

– 𝑝𝑜𝑖𝑛𝑡: A 2D point [𝑥,𝑦].

– 𝑧: The Z-axis position of the point.

� Output: A transformed 3D point [𝑥1,𝑦1,𝑧].

Creating an List of Points

The list 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠 stores all 3D points for the polyhedron by iterating through the Z-axis in increments of the
user-de�ned constant 𝑡𝑤𝑖𝑠𝑡𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ:

8 twistStepLength = 1;

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠 is a list that iterates through every 𝑧 value in steps of 𝑡𝑤𝑖𝑠𝑡𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ and through each point
from the output of 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠() and pass it to 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑃𝑜𝑖𝑛𝑡() to obtain the location of all vertices.

When iterating up to 𝑡𝑤𝑖𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ by an increment for which it is not evenly divisible by 𝑡𝑤𝑖𝑠𝑡𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ, the
for loop will stop short by a value of 𝑡𝑤𝑖𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ mod 𝑡𝑤𝑖𝑠𝑡𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ. So we iterate through 𝑡𝑤𝑖𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ −
𝑡𝑤𝑖𝑠𝑡𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ and then add one �nal 𝑧 value at 𝑡𝑤𝑖𝑡𝑠𝐿𝑒𝑛𝑔𝑡ℎ. This results in in a slightly longer �nal step but
ensures the total length and �nal position of the twist is the same at di�ering values of 𝑡𝑤𝑖𝑠𝑡𝑆𝑡𝑒𝑝𝐿𝑒𝑛𝑔𝑡ℎ.

28 channelProfile = polygonPoints(radius ,sideCount ,centerOffset);

29 channelPoints = [

30 for(z=[0: twistStepLength:twistLength -twistStepLength],i=[0: len(

channelProfile) -1])

31 translatePoint(channelProfile[i],z),

32 for(z=twistLength ,i=[0: len(channelProfile) -1])

33 translatePoint(channelProfile[i],z)

34 ];

radius=2; sideCount=3; centerO�set=2;
echo(channelPoints);
//ECHO: [[1, 0, 0], [2.5, 0.866025, 0], [2.5, -0.866025, 0], [0.996209, 0.0869933, 1], [2.41518, 1.08023, 1], [2.56586,

-0.645259, 1]]
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2.2 Faces

The faces parameter for the 𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑜𝑛() object is a list, in no particular order, of lists of the vertices in each
face. 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠 contains all of the vertex coordinates, so the face is de�ned by a referencing the index of the
coordinates in 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠. The �rst vertex is arbitrary but each vertex list must be ordered so the vertices are
listed clockwise when viewing the face from the outside of the object inward.

The �rst two faces we de�ne are the top and bottom faces. These faces are each de�ned by the �rst and last
𝑠𝑖𝑑𝑒𝐶𝑜𝑢𝑛𝑡-points in 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝑜𝑖𝑛𝑡𝑠. We structure the for loop to list the points is the proper order.

35 channelTop = [for(i=[len(channelPoints)-sideCount:len(channelPoints) -1])i];

36 channelBottom = [for(i=[sideCount -1: -1:0])i];

We will divide the remaining faces into two groups. Triangle that �point down� and triangles that �point up�.
To aid in de�ning them we �ll a table with the points.
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channelFaces1

𝑖 point 1 point 2 point 3
0 0 4 3
1 1 5 4
2 2 3 5

channelFaces2

𝑖 point 1 point 2 point 3
0 0 1 4
1 1 2 5
2 2 0 3

We de�ne the values in terms of 𝑖 and 𝑠𝑖𝑑𝑒𝐶𝑜𝑢𝑛𝑡. Point 1 in each table is simply 𝑖. Point 3 in 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐹𝑎𝑐𝑒𝑠1
is 𝑖 + 𝑠𝑖𝑑𝑒𝐶𝑜𝑢𝑛𝑡. The remaining patterns are completed by checking if 𝑖 + 1 is evenly divided by 𝑠𝑖𝑑𝑒𝐶𝑜𝑢𝑛𝑡 and
using a conditional and the modulo operator to account for the points �wrapping around� the indices of the cross
section.

37 channelFaces1 = [for(i=[0: twistLength/twistStepLength*sideCount -1])

38 [

39 i,

40 (i+1)%sideCount == 0 ? i+1 : i+sideCount +1,

41 i+sideCount

42 ]

43 ];

44 channelFaces2 = [for(i=[0: twistLength/twistStepLength*sideCount -1])

45 [

46 i,

47 (i+1)%sideCount == 0 ? i-sideCount +1 : i+1,

48 (i+1)%sideCount == 0 ? i+1 : i+sideCount +1

49 ]

50 ];

We combine our the four lists of faces.

51 channelFaces = concat( [channelTop ],[ channelBottom] , channelFaces1 , channelFaces2 );
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3 Final details

We create:

� A constant to de�ne how many channels there are concurrently twisting up the axis.

9 grooveCount = 6;

� A loop to evenly distribute 𝑔𝑟𝑜𝑜𝑣𝑒𝐶𝑜𝑢𝑛𝑡 channels around the axis.

52 for( i = [360/ grooveCount :360/ grooveCount :360])

53 rotate ([0,0,i])

54 polyhedron( points=channelPoints , faces=channelFaces

55 );

� Constants to de�ne the parameters of the two channels. We compute the radius from the diameter to match
the units such as the wire size that the uer will be using to determine these parameters.

10 waterChannelDiameter = 4;

11 waterChannelRadius = waterChannelDiameter /2;

12 waterChannelSideCount = 4;

13 waterChannelOffset = 4.95;

14 wireChannelDiameter = 1.1;

15 wireChannelRadius = wireChannelDiameter /2;

16 wireChannelSideCount = 16;

17 wireChannelOffset = 2.65;

� Calls to the 𝑐ℎ𝑎𝑛𝑛𝑒𝑙() module for each channel and appropriate parameters to de�ne the top-level geometry

65 channel(wireChannelRadius ,wireChannelSideCount ,wireChannelOffset);

66 channel(waterChannelRadius ,waterChannelSideCount ,waterChannelOffset);

Conclusion

The integration of user-de�ned parameters allows for �exibility in designing the ri�ing pro�le. This approach
eliminates many of the technical barriers associated with designing the complex geometry of a progressive twist.

Further testing is required to evaluate the impact of various twist pro�les on projectile performance and to re�ne
the model based on experimental results.

The equations and methods presented here aim to balance functionality with simplicity, avoiding unnecessary
complexity that could hinder usability. However, as experimentation with these designs continues, new insights
may lead to improved models and better outcomes.

Finally, in the spirit of open innovation, this code and methodology have been released into the public domain to
encourage experimentation and collaboration within the maker and hobbyist community. By removing barriers to
access and sharing this knowledge freely, we hope to inspire continued advancements in home �rearm manufacturing
and the democratization of advanced machining techniques.
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Addendum

Code License

This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form

or as a compiled binary, for any purpose, commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright

interest in the software to the public domain. We make this dedication for the bene�t of the public at large and
to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in
perpetuity of all present and future rights to this software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <http://unlicense.org/>
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1 twistLength = 104;

2 muzzleTwistLength = 19;

3 gainTwistLength = twistLength - muzzleTwistLength;

4 breechTwistRate = 1092.2;

5 muzzleTwistRate = 254;

6 gain = breechTwistRate - muzzleTwistRate;

7 gainProfile = .94;

8 twistStepLength = .5;

9 grooveCount = 6;

10 waterChannelDiameter = 4;

11 waterChannelRadius = waterChannelDiameter /2;

12 waterChannelSideCount = 4;

13 waterChannelOffset = 4.95;

14 wireChannelDiameter = 1.1;

15 wireChannelRadius = wireChannelDiameter /2;

16 wireChannelSideCount = 16;

17 wireChannelOffset = 2.65;

18 function linearGainRotation(z) = 180*z^2*( muzzleTwistRate ^-1- breechTwistRate ^-1)/

gainTwistLength +360*z/breechTwistRate;

19 function hyperbolicGainRotation(z) = -360* gainTwistLength/gain*(ln(z*-gain/gainTwistLength+

breechTwistRate)-ln(breechTwistRate));

20 function gainRotation(z) = (linearGainRotation(z)*(1- gainProfile)) + hyperbolicGainRotation(z)

*gainProfile;

21 function muzzleRotation(z) = (z-gainTwistLength)*muzzleTwistRate ^ -1*360+ gainRotation(

gainTwistLength);

22 function rotation(z) = z <= gainTwistLength ? gainRotation(z):muzzleRotation(z);

23 function polygonPoints(radius ,sideCount ,centerOffset) =

24 [for(i=[0: sideCount -1])

25 [

26 radius * sin (360/ sideCount*i-90) + centerOffset ,

27 radius * cos (360/ sideCount*i-90)

28 ]

29 ];

30 function translatePoint(point ,z) = [

31 cos(rotation(z)) * point.x - sin(rotation(z)) * point.y ,

32 cos(rotation(z)) * point.y + sin(rotation(z)) * point.x ,

33 z

34 ];

35 module channel(radius ,sideCount ,centerOffset){

36 channelProfile = polygonPoints(radius ,sideCount ,centerOffset);

37 channelPoints = [

38 for(z=[0: twistStepLength:twistLength -twistStepLength],i=[0: len(

channelProfile) -1])

39 translatePoint(channelProfile[i],z),

40 for(z=twistLength ,i=[0: len(channelProfile) -1])

41 translatePoint(channelProfile[i],z)

42 ];

43 channelTop = [for(i=[len(channelPoints) -1:-1:len(channelPoints)-sideCount ])i];

44 channelBottom = [for(i=[0: sideCount -1])i];

45 channelFaces1 = [for(i=[0: twistLength/twistStepLength*sideCount -1])

46 [

47 i,

48 (i+1)%sideCount == 0 ? i+1 : i+sideCount +1,

49 (i+1)%sideCount == 0 ? i-sideCount +1 : i+1

50 ]

51 ];

52 channelFaces2 = [for(i=[0: twistLength/twistStepLength*sideCount -1])

53 [

54 i,

55 i+sideCount ,

56 (i+1)%sideCount == 0 ? i+1 : i+sideCount +1

57 ]

58 ];

59 channelFaces = concat( [channelTop ],[ channelBottom] , channelFaces1 , channelFaces2 );

60 for( i = [360/ grooveCount :360/ grooveCount :360])

61 rotate ([0,0,i])

62 polyhedron( points=channelPoints , faces=channelFaces

63 );

64 }

65 channel(wireChannelRadius ,wireChannelSideCount ,wireChannelOffset);

66 channel(waterChannelRadius ,waterChannelSideCount ,waterChannelOffset);
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